Exploración cervical bilateral v/s focalizada en hiperparatiroidismo primario. Comparación de resultados pre y posoperatorios. Estudio cooperativo

Rodrigo Alberto Miranda Palta^{1,a}, Claudio Correa Llanos^{1,b}, Valentina Rodriguez Llanos^{1,c}, Camila Castro Torres^{1,d}, Lucas Fuenzalida Mery^{2,e}, Tomas Gonzalez Arestizábal^{2,f}, Francisco Rodriguez Moreno^{1,2,g}, Patricio Cabané Toledo^{1,2,h}

Cervical bilateral exploration v/s focused in primary hyperparathyroidism. Comparison of pre and postoperative results

Introduction: Primary hyperparathyroidism (PHP) is the third most common endocrine disorder, with surgery being the only curative treatment. The outcomes depend on the pre-surgical evaluation and the surgical technique employed. **Objective**: A description of the outcomes from historical cohorts of bilateral cervical exploration (BCE) and focused exploration (FE) is provided. **Materials and Methods**: BCE and FE, both utilizing intraoperative PTH (ioPTH), performed by a head and neck surgeon at two university clinical centers, were compared. **Results**: The study included 138 patients treated for PHP, 94 with BCE and 44 with FE. A decline according to the Miami and Rome criteria was achieved in most patients. Upon follow-up, both groups showed normalization of calcium and PTH levels, with no significant difference (p > 0.05). Multiglandular disease was diagnosed in 3 out of 11 cases without a preoperative suspicion based on imaging in the BCE group and none in the FE group. **Discussion**: The outcomes of BCE and FE with ioPTH measurement are similar in terms of results, with differences in the diagnosis of multiglandular disease. **Conclusion**: BCE (expert group) can be considered a first-line alternative.

Keywords: primary hyperparathyroidism; parathyroid hormone; head and neck neoplasms; treatment; parathyroidectomy.

Resumen

Introducción: El hiperparatiroidismo primario (HPP) es el tercer trastorno endocrino más frecuente, siendo la cirugía el único tratamiento curativo. Los resultados dependen del estudio prequirúrgico y de la técnica quirúrgica a utilizar. **Objetivo:** Se realiza una descripción de los resultados de cohortes históricas de exploración cervical bilateral (EB) y exploración focalizada (EF). **Materiales y Métodos:** Se compararon la EB y EF, ambas con PTH intraoperatoria (PTHio), operados por un cirujano de cabeza y cuello en dos centros clínicos universitarios. **Resultados:** Se incluyeron 138 pacientes operados por HPP, 94 pacientes con EB y 44 con EF. Se logró descenso según criterios de Miami y Roma en la mayoría de los pacientes. Al seguimiento, en ambos grupos se logra normalización de calcemia y PTH, sin diferencia significativa (p > 0,05). La enfermedad multiglandular se logró diagnosticar en 3 de 11 casos que no tenían diagnóstico preoperatorio de sospecha en imágenes en el grupo de EB y ninguno en EF. **Discusión:** Los resultados de EB y EF con medición de PTHio son similares en cuanto a resultados, con diferencias en el diagnóstico de enfermedad multiglandular. **Conclusión:** La EB (grupo experto) puede ser considerada como alternativa de primera línea.

Palabras clave: hiperparatiroidismo primario; parathormona; neoplasias de cabeza y cuello; tratamiento; paratiroidectomía.

¹Universidad Andrés Bello-Clínica Indisa.

²Universidad de Chile-Hospital Clínico Universidad de Chile. ^ahttps://orcid.org/0000-0003-2753-3408

^bhttps://orcid.org/0009-0006-8139-0339

chttps://orcid.org/0009-0008-0429-7960

dhttps://orcid.org/0009-0002-2563-9620

ehttps://orcid.org/0009-0001-3621-6394 fhttps://orcid.org/0000-0001-

9112-8760 9https://orcid.org/0009-0005-

4670-2539

https://orcid.org/0000-0003-0243-2870

Recibido el 2024-03-10 y aceptado para publicación el 2024-04-08

Correspondencia a:

Dr. Patricio Cabané T. patriciocabane@gmail.com

E-ISSN 2452-4549

Introducción

El hiperparatiroidismo primario (HPP) es el tercer trastorno endocrino más frecuente. Su prevalencia se estima entre 0,1% al 2% de la población. Es más prevalente en mujeres y la máxima incidencia se encuentra entre los 50-60 años^{1,2}. El diagnóstico se confirma con exámenes de laboratorio y la evaluación endocrinológica. Los síntomas del HPP son multisistémicos, destacando: neuromuscular, digestivo, óseo, cardiovascular, y músculo esquelético, siendo la mayoría de los pacientes oligosintomáticos. El único tratamiento definitivo es la cirugía, realizándose la extirpación del tejido paratiroideo hiperfuncionante³. Habitualmente se trata de un único adenoma, sin embargo, hay pacientes que presentan adenomas dobles o enfermedad multiglandular, lo cual cambia en forma importante el enfrentamiento quirúrgico. Por lo anterior, es relevante un adecuado estudio y planificación preoperatoria⁴.

En la actualidad, las guías clínicas recomiendan la cirugía para todos los pacientes sintomáticos. En pacientes asintomáticos, se recomienda en aquellos que presenten las siguiente características: menor de 50 años, calcio sérico mayor a 1 mg/dl del límite normal superior, velocidad de filtración glomerular estimada menor a 60 mL/min, calciuria mayor a 400 mg/día o nefrolitiasis y nefrocalcinosis (demostrada por radiografía, ultrasonido o tomografía computada (TC)), densidad ósea con T Score < 2,5 DS o antecedente de fractura vertebral previa asintomática4. Se debe evaluar multidisciplinariamente el enfrentamiento de estos pacientes, ya que hay cuadros que se escapan de la regla del diagnóstico habitual (HPP normocalcémico, normohormonal, etc) y pacientes que se pueden beneficiar de la cirugía fuera de la recomendación de las guías.

El tipo de cirugía ha variado a través del tiempo, desde exploraciones cervicales bilaterales, focalizada, hasta la utilización de cirugía mínimamente invasiva y por accesos remotos⁵. La EB corresponde al enfoque tradicional, donde se exponen las cuatro glándulas paratiroides, y no exige la localización preoperatoria⁶. Por otra parte, la EF consiste en la exploración cervical unilateral, en donde se realiza la escisión del adenoma localizado de forma preoperatoria. Esta modalidad requiere confirmación intraoperatoria (ya sea con biopsia y/o PTH intraoperatoria (PTHio)). Para esto, debe existir un estudio de localización preoperatorio de las glándulas patológicas mediante imágenes: ecografía cervical, tomografía con sestamibi o PET-CT con F-fluorometilcolina (FCH), en donde este último ha demostrado ser el método más sensible y específico para su localización, pero de alto costo y poco acceso⁷. Además, se debe realizar un control de la PTHio, lo que confirma la extirpación completa del tejido hiperfuncionante si cumple los criterios de descenso establecidos⁸.

Si bien con la exploración cervical focalizada se describe menor hipocalcemia temporal, menor tiempo quirúrgico y mayor beneficio cosmético, también conlleva mayor probabilidad de recurrencia o enfermedad persistente (hasta un 5% de los pacientes). En casos de exploración unilateral por accesos remotos, la cirugía puede ser aún más invasiva (Ej: axilar, submamario) con mayor riesgo de complicaciones. Además, existen condiciones y situaciones de sospecha de enfermedad multiglandular o adenoma doble, localización ectópica, en que la cirugía bilateral es recomendable.

La exploración bilateral es una alternativa segura, de bajo costo, corto tiempo operatorio y bajo riesgo de complicaciones. Además, es relevante considerar que los estudios de localización preoperatorios recomendados por guías clínicas son muy especializados y no se encuentran disponibles en la mayoría de los centros públicos o incluso privados. Por otro lado, la PTHio es un examen de fácil proceso con un equipo especial y de alto costo. El análisis de PTH en laboratorio central también es una opción, sin embargo, no permite tener el resultado durante la cirugía⁹.

Algunos autores han descrito una tendencia a la disminución de EF, favoreciendo la EB, sin aumentar costos ni complicaciones⁹. En la actualidad, debemos enfrentar esta patología considerando las distintas alternativas quirúrgicas y podemos establecer protocolos de manejo quirúrgico seguros, de corta duración, bajo costo y alta efectividad. Dado esto último, el manejo quirúrgico clásico de EB con métodos de localización pre e intraoperatoria podría ser tan efectivo como el focalizado, disminuyendo la recurrencia y persistencia de esta enfermedad.

En este trabajo se realizará una descripción de los resultados de cohortes históricas de EF, en comparación con la EB con estudio preoperatorio, según las guías clínicas actuales, en dos centros clínicos universitarios.

Material y Métodos

El diseño de este estudio fue analítico, observacional, longitudinal y retrospectivo. Se analizaron las bases de datos de pacientes operados de HPP en el Hospital Clínico de la Universidad de Chile

(HCUCH) y en Clínica Indisa en dos períodos (primer periodo: 2014-2020, HCUCH y segundo periodo: 2017-2022, INDISA). La población de estudio incluye a todos los pacientes sometidos a cirugía por HPP por el autor PC. Se cuenta con autorización por comité ético científico de ambas instituciones (según la norma 57 del Ministerio de Salud de Chile, de la ley 20.120 sobre investigación científica en seres humanos).

Ambos grupos fueron analizados en el preoperatorio por equipo endocrino quirúrgico basado en guías clínicas internacionales, con localización preoperatoria con al menos dos técnicas de imágenes y la resolución quirúrgica fue llevada a cabo por el mismo cirujano. Entre ambos periodos de estudio solo varió la disponibilidad de PTHio en un tiempo prudente durante la cirugía (menos de 1 hora), por esto hubo tendencia a realizar exploración bilateral en la mayoría de los pacientes del segundo periodo. Se consideró especialmente la EB en los pacientes que no tenían localización en exámenes preoperatorios o sospecha de NEM.

La EF se realizó mediante incisión cervical, exploración de sitio identificado preoperatoriamente y confirmación intraoperatoria con biopsia contemporánea y descenso de niveles de PTHio. En la EB, se realizó principalmente la exploración bilateral, con identificación de las cuatro paratiroides, resección de la paratiroides patológica, confirmación con biopsia contemporánea y toma de muestra de PTHio basal, a los 15 y 30 minutos posrresección. Las muestras sanguíneas fueron analizadas en equipo ROCHE COBAS según recomendaciones del fabricante.

Las variables clínicas sociodemográficas analizadas fueron: edad, sexo, antecedentes mórbidos y quirúrgicos. Las variables intraoperatorias analizadas fueron: PTH intraoperatoria (basal, 15 minutos y 30 minutos posrresección - pg/ml), tipo de cirugía (focalizada v/s bilateral) y tiempo quirúrgico (minutos). Las variables posoperatorias fueron: niveles de calcemia y fosfemia posoperatoria (mg/dl), PTH sérica posoperatoria tardía, requerimiento de calcio y vitamina D y complicaciones posoperatorias generales y específicas.

Se realizó estadística descriptiva. Las variables continuas son descritas mediante percentiles, promedio y desviación estándar, mientras que las variables categóricas son descritas mediante frecuencias y porcentajes.

La comparación de los resultados obtenidos de ambos grupos se realizó mediante el análisis estadístico en software STATA 14, con una significancia estadística con un p < 0.05.

Resultados

Se revisó un total de 180 fichas clínicas de pacientes intervenido por un cirujano (PC) (promedio 22,5 pctes/año), de los cuales 138 pacientes cumplieron con los criterios de inclusión. Los pacientes excluidos fueron por tiroidectomías asociada (N:36), autotrasplante de paratiroides (N:3) y abordaje transoral endoscópica por abordaje vestibular (TOEPVA, N:3).

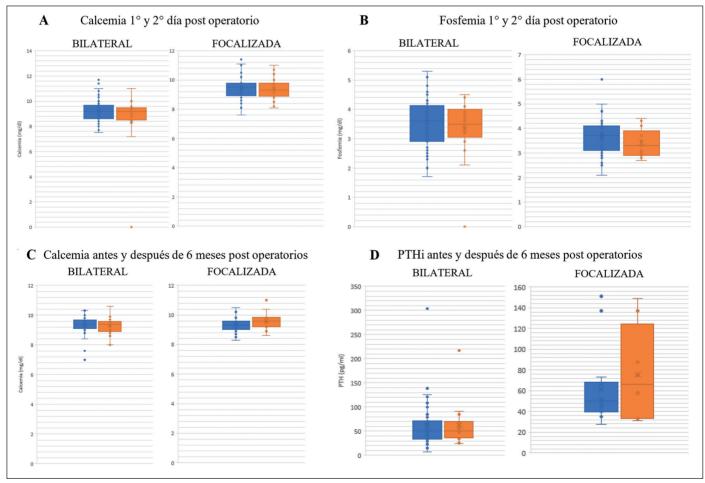
La distribución de los pacientes fue: 94 operados con EB y 44 pacientes con EF (Tabla 1). De la histología, más del 80% correspondió a adenoma de paratiroides, seguido del doble adenoma en los pacientes con EB (Tabla 2).

Tabla 1. Variables sociodemográficas, preoperatorias, intraoperatorias, posoperatorias y de seguimiento

Tipo de cirugía Variables sociodemográficas	Bilateral		Focalizada		
	Media + DE	N	Media + DE	N	p valor
Edad (años)	$57,\!4\pm16,\!4$	94	$60,8\pm17,5$	44	0,2739
Hombres		74		33	0,2386
Mujeres		20		11	0,2386
Variables preoperatorias					
PTH intacta (pg/ml)	$217,5 \pm 293,4$	82	$204,6 \pm 141,3$	40	0,7929
Calcemia (mg/dl)	$11,3 \pm 1,0$	89	$11,\!4\pm0,\!9$	38	0,4981
Fosfemia (mg/dl)	$2,8 \pm 0,6$	73	$2,7\pm0,5$	35	0,4078
Albúmina (g/dl)	$4,3 \pm 0,4$	29	$4,2 \pm 0,5$	16	0,1894
25 OH Vit D (ng/ml)	$22,2 \pm 10,4$	49	$20,\!4\pm10,\!5$	22	0,5033
Variables intraoperatorias					
Calciuria 24 hrs (mg/día)	$371,2 \pm 174,5$	34	$424,4 \pm 188,5$	10	0,4095
Tiempo operatorio (minutos)	$64,5 \pm 36,5$	42	$50,1 \pm 27,6$	39	0,0514
PTHio Basal (pg/ml)	$235,8\pm280,7$	89	$221,3 \pm 166,0$	41	0,7579
PTHio 15 min (pg/ml)	$68,1 \pm 66,7$	89	$80,1 \pm 158,6$	40	0,5463
PTHio 30 min (pg/ml)	$39,8 \pm 37,5$	83	$48,4 \pm 65,7$	35	0,3727
Variables posoperatorias					
Calcemia 1 (mg/dl)	$9,2 \pm 0,8$	88	$9,4 \pm 0,8$	41	0,2043
Calcemia 2 (mg/dl)	$9,1 \pm 0,7$	22	$9,4 \pm 0,8$	18	0,3197
Fosfemia 1 (mg/dl)	$3,6 \pm 0,8$	74	$3,7\pm0,8$	35	0,4931
Fosfemia 2 (mg/dl)	$3,5 \pm 0,7$	16	$3,4 \pm 0,6$	13	0,5701
Albúmina (g/lt)	$3,6 \pm 0,4$	69	$3,5 \pm 0,4$	29	0,7879
Variables seguimiento					
Calcemia < 6 meses PO (mg/dl)	$9,4 \pm 0,6$	78	$9,3 \pm 0,5$	26	0,8471
Calcemia > 6 meses PO (mg/dl)	9.3 ± 0.6	23	$9,6\pm0,6$	13	0,1208
PTHi < 6 meses PO (pg/ml)	$61,\!6\pm45$	55	$61,9\pm36,9$	14	0,9821
PTHi > 6 meses PO (pg/ml)	$62,9 \pm 48,6$	14	$75,6 \pm 46,5$	8	0,555

*DE: Desviación estándar, PTH: Paratohormona, PTHio: PTH intra operatoria, PTHi: PTH intacta, Calcemia 1: Calcemia al primer día posoperatorio, Calcemia 2: Calcemia al segundo día posoperatorio, Fosfemia 1: Fosfemia al primer día posoperatorio, Fosfemia 2: Fosfemia al segundo día posoperatorio, PO: Posoperatorio.

Del estudio preoperatorio, en la mayoría de los pacientes se realizó ecografía cervical, cintigrama planar Sestamibi, SPECT/CT y combinación de estos. De estos estudios, no existió diferencia significativa en localización de lesiones únicas o múltiples en la ecografía cervical, cintigrama y SPECT CT (p > 0,05). En el grupo de EB, no se identificó localización preoperatoria en 15,6, 13,2 y 6% de ecografías, cintigramas y SPECT/CT respectivamente. El cintigrama sin localización demuestra diferencia estadística significativa con el grupo de exploración focalizada (6 y 0% respectivamente, p < 0,05). Esto refleja la necesaria indicación quirúrgica más extensa en casos de no localización (Tabla 3).


No hubo diferencia significativa en la baja de PTH basal, a los 15 y a los 30 minutos entre ambas técnicas (p > 0.05) al igual que la calcemia posoperatoria inmediata y en controles de calcemia y PTH

a menos y más de 6 meses posoperatorios (Tabla 2 y Figura 1). Sin embargo, la dispersión de los resultados en el *boxplot* de nivel de PTH intacta (PTHi) a más de 6 meses de control es mayor en el grupo de exploración focalizada.

Tabla 2. Histología de pacientes en biopsia definitivas

Resultado biopsia diferida	Bilateral	Focalizada
Adenoma	79 (84,1%)	37 (84%)
Doble adenoma	5 (5,5%)	0 (0%)
Hiperplasia	5 (5,4%)	5 (11,3%)
Normotípico	2 (2,1%)	2 (4,5%)
Quiste paratiroideo	1 (1,1%)	0 (0%)

^{*}Porcentajes calculados desde el N total de cada grupo.

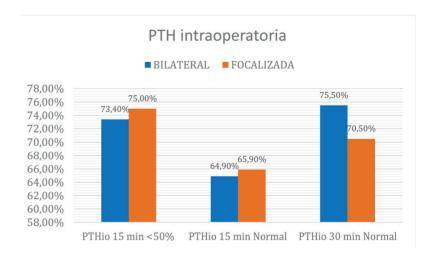
Figura 1. Gráficos de boxplot de calcemia, fosfemia y PTHi en cirugía cervical con exploración bilateral versus focalizada. **A:** calcemia al primer y segundo día posoperatorio. **B:** Fosfemia al primer y segundo día posoperatorio. **C:** Calcemia antes y después de 6 meses posoperatorios. **D:** PTHi antes y después de 6 meses posoperatorios.

Se realizó una prueba de chi cuadrado para examinar la relación entre la técnica quirúrgica y el valor de PTHio a los 15 minutos con baja de más del 50% del basal. La relación entre estas variables no fue significativa (p = 0,521). También se comparó con la normalización de la PTH a los 15 y 30 minutos posoperatorios, cuya diferencia tampoco fue significativa (p = 0,651 y p = 0,889 respectivamente; Figura 2). Además, se compararon las dosis de calcio oral (500 mg), donde la mayoría de los pacientes se dan de alta con calcio oral 500 mg cada 8 horas (61 pacientes en EB y 33 en EF, p = 0,148) y sin indicación de calcitriol oral (80 en EB y 42 en EF, p = 0,103), sin diferencia significativa.

Al comparar la baja de la PTHio en ambos grupos, en los pacientes con PTH basal entre 72-150, > 150-500 y > 500 pg/ml, la mayoría logro una baja del 50% de la PTHio a los 15 minutos, como también la normalización de la PTH a los 15 min. Los pacientes con PTH basal mayor a 500 pg/ml lograron una baja del 50% a los 15 minutos de la PTHio, sin embargo, sólo 1 paciente de cada grupo logró normalizar la PTH a los 30 minutos (Tabla 4), pero si se logró normalización en la medición al 1er día posoperatorio.

Las complicaciones posoperatorias, fueron escasas y no mostraron diferencia estadística significativa. El hematoma se presentó sólo en un 1,1% (N = 1) el grupo EB y un 2,2% (N = 1) en el grupo EF (p: 0,541). La hipocalcemia transitoria fue mayor en el grupo EB con un 8.5% (N=8) en comparación a la focalizada que fue un 2,2% (N = 1) (p: 0,271). No hubo lesión de nervio laríngeo recurrente en ambos grupos.

De un total de 11 pacientes que presentaron patología múltiple confirmada por biopsia diferida, 9 fueron operados con EB y 2 por EF. Del grupo EB, sólo en 1 paciente se detectó patología múltiple en el estudio preoperatorio tanto en la ecografía cervical, cintigrama y SPECT CT (11%), mientras que del grupo EF, ninguno tenía estudio preoperatorio con imágenes positivas.


Discusión

En el HPP, el único tratamiento definitivo es la cirugía, realizándose la extirpación del tejido paratiroideo hiperfuncionante³. En una revisión sistemática donde se comparaban los resultados del tratamiento médico *versus* quirúrgico, se evidenció que la cirugía logra una cura bioquímica en más del 95% de los pacientes de ensayos aleatorios, aumentando además la DMO de columna y cadera total¹⁰.

Tabla 3. Exámenes de localización preoperatoria

Tipo de cirugía	Bilateral (n = 94)	Focalizada (n = 44)	P valor		
Ecografía	83 (88,3%)	39 (88,6%)	0,777		
Localiza	70 (74,4%)	33 (75%)	0,968		
Únicos paratiroideo	43 (45,7%)	25 (56,8%)	0,559		
Únicos tiroideos	11 (11,7%)	4 (9,1%)	0,559		
Múltiples paratiroideos	8 (8,5%)	0 (0%)	0,117		
Múltiples tiroideos	18 (19,1%)	6 (13,6%)	0,117		
Cintigrama (Tc-99 sestamibi)	67 (71,3%)	38 (86,4%)	0,078		
Localiza	59 (62,8%)	37 (85,1%)	0,143		
Únicos	51 (54,2%)	38 (86,4%)	0,084		
Múltiples	6 (6,4%)	0 (0%)	0,084		
Spect/CT	38 (40,4%)	12 (27,2%)	0,171		
Localiza	33 (35,1%)	12 (27,2%)	1		
Únicos	29 (30,9%)	12 (27,2%)	0,551		
Múltiples	3 (3,2%)	0 (0%)	0,551		
Exámenes de localización preop sin focalización					
Ecografía	13 (15,6%)	6 (15,3%)	1		
Cintigrama (Tc-99 sestamibi)	8 (11,9%)	0 (0%)	0,048		
Spect/CT	5 (13,1%)	0 (0%)	0,319		

^{*}Porcentajes calculados desde el N total de cada grupo.

Figura 2. Gráfico de PTH intraoperatoria basal, a los 15 y 30 minutos de la resección, comparando técnica quirúrgica bilateral v/s localizada.

La técnica de EB es una de las técnicas quirúrgicas más utilizadas desde el inicio de la cirugía del HPP¹¹. La EF exige contar con diagnóstico bioquímico y de imágenes preciso, además de confirmación intraoperatoria de control bioquímico adecuado (PTHio).

El examen preoperatorio más utilizado actualmente es la combinación de ecografía cervical con el cintigrama con TC 99 m Sestamibi, aumentando la sensibilidad del 81 al 95%¹². Además, es importante mencionar que un número considerable de pacientes tienen hallazgos tiroideos preoperatorios (28%) que pueden requerir más estudios o tratamiento quirúrgico y pueden aumentar los falsos positivos, sobre todo en los estudios cintigráficos.

En este estudio evidenciamos que un 11 a 15% de los exámenes de imágenes no logra una localización preoperatoria, lo que modifica la elección de la técnica quirúrgica. Por otro lado, en el grupo de pacientes diagnosticados con patología múltiple posoperatoria, sólo en el 11% de ellos se detectó la patología en exámenes preoperatorios (exclusivamente en el grupo EB); en este contexto, la EB podría tener mejores resultados a largo plazo, logrando detectar en el intra operatorio la patología múltiple y así menor persistencia/recurrencia del HPP.

La PTHio se ha descrito para comprobar la extirpación del tejido hiperfuncionante. Los criterios de curación más utilizados son los de Miami (basal, preescisión antes de llegar al pedículo a los 5 y 10 minutos posextracción)¹³. Existen otros predictores de curación intraoperatoria como los de Roma y Viena. En este estudio se utilizó la medición de PTH basal, a los 15 y a los 30 minutos¹⁴, logrando disminución de PTH similar en ambos grupos. Una revisión que actualiza los aspectos quirúrgicos del HPP refiere que la PTHio se asocia con un aumento marginal de la tasa de curación en pacientes con HPP que tienen una alta sospecha de enfermedad monoglandular localizada con dos estudios de imágenes corcordantes. Según lo anterior, la PTHio tendría un escaso valor en la toma de decisiones quirúrgicas durante la paratiroidectomía, en ≤6% de los casos, presentando costos adicionales, tiempo operatorio más prolongado y exploraciones contralaterales innecesarias^{15,16}. Con esta evidencia, más los resultados descritos de nuestro estudio, la PTHio tanto para EF como EB tienen resultados similares, con lo que se podría prescindir de estos exámenes en el caso de EB donde no se tenga la PTHio como recurso intraoperatorio.

La incidencia informada de hematomas sintomáticos después de tiroidectomía y paratiroidectomía es del 0,36 al 4,3%¹⁷. En las complicaciones

Tabla 4: Bajas de PTHio según el valor basal preoperatorio de PTH

PTH preoperatoria	Bilateral	Focalizada	P valor
PTH 72-150	41	15	0,745
PTHio 15 min <50%	27 (65,9%)	9 (60%)	0,745
PTHio 15 min Normal	28 (68,2%)	11 (73,3%)	0,745
PTHio 30 min Normal	34 (82,9%)	9 (60%)	0,745
PTH >150-500	34	21	0,949
PTHio 15 min <50%	27 (79,4%)	19 (90,4%)	0,949
PTHio 15 min Normal	22 (64,7%)	14 (66,6%)	0,949
PTHio 30 min Normal	23 (67,6%)	17 (80,9%)	0,949
PTH >500	4	2	1
PTHio 15 min <50%	4 (100%)	2 (100%)	1
PTHio 15 min Normal	1 (25%)	0 (0%)	1
PTHio 30 min Normal	1 (25%)	1 (50%)	1

^{*}Porcentajes calculados desde el N total de cada grupo (PTH 72-500 y PTH \geq 500 respectivamente).

reportadas en esta casuística el hematoma cervical posoperatorio se presentó solo en 1 paciente de cada grupo, representando el 1%, coincidiendo con el rango de incidencia descrito en la literatura, asociado además a un 8,5% de hipocalcemia transitoria en el grupo de exploración cervical bilateral, sin lesión de nervio laríngeo recurrente en ambos grupos. En nuestro estudio las calcemias posoperatorias al primer y segundo día posoperatorio se mantuvieron en rangos similares con ambas técnicas de exploración cervical, al igual que en el seguimiento de calcemias antes y después de los 6 meses posoperatorios. Cabe destacar que, en el grupo de EF, se observa un rango de dispersión con PTH más elevada a los controles de más de 6 meses posoperatorios, que podría significar mayor riesgo de persistencia/recurrencia a largo plazo.

Las indicaciones de EB en HPP se amplían cada vez más, confirmando la tendencia mundial a favorecer esta técnica operatoria. Estas indicaciones son: estudios de localización preoperatoria no disponibles, imposibilidad de localización en imágenes preoperatoria, evidencia de enfermedad multiglandular preoperatoria, reoperación por recurrencia/persistencia de HPP, PTHio no disponible, PTH preoperatoria muy elevada (> 2 veces lo normal o > 500 pg/ml)¹⁸, descenso inadecuado de PTHio, enfermedad tiroidea concomitante (necesidad de tiroidectomía o riesgo de falsos positivos en estudio preoperatorio), bajo volumen del equipo quirúrgico y sospecha de Neoplasia Endocrina Multiple.

Conclusión

Con los resultados descritos, la técnica de EB realizada en un grupo de alto volumen de patología paratiroidea (con biopsia contemporánea y toma de muestra de PTHio) es similar a la EF en: tiempo operatorio, complicaciones y resultados metabólicos. Además, existe la posibilidad de diagnosticar enfermedad multiglandular no evidenciada en exámenes preoperatorios. Es importante contar con experiencia y disponibilidad de técnicas de apoyo a la cirugía (imágenes, medicina nuclear, biopsia, PTHio, criopreservación) para elegir la mejor alternativa para cada caso, analizado en forma multidisciplinaria.

Responsabilidades éticas

Protección de personas y animales. Los autores declaran que en este manuscrito no se han realizado experimentos en seres humanos ni animales.

Confidencialidad de los datos. Los autores declaran que en este artículo no aparecen datos de pacientes.

Financiación: Ninguna.

Conflictos de interés: Ninguno.

Se cuenta con autorización por comité ético científico de ambas instituciones

Rol

Rodrigo Miranda Palta: Recopilación de datos, análisis estadístico, revisión bibliográfica y redacción de artículo

Claudio Correa Llanos: Recopilación de datos, revisión bibliográfica y redacción de artículo

Valentina Rodriguez Lagos: Recopilación de datos, revisión bibliográfica y redacción de artículo Camila Castro Torres: Revisión bibliográfica y redacción de artículo

Lucas Fuenzalida Mery: Revisión bibliográfica y redacción de artículo

Tomas Gonzalez Arestizabal: Recopilación de datos, gestión de autorización de comité de ética

Francisco Rodríguez Moreno: Revisión de articulo y reedición de artículo

Bibliografía

- Rappoport D, María Caballero MG, Cortés N, Cabané P, Gac P. Rodriguez F. Hiperparatiroidismo primario. Rev Cir. 2021;73(2):222-6. DOI: http://dx.doi. org/10.35687/s2452-45492021002910.
- Yeh MW, Ituarte PHG, Zhou HC, Nishimoto S, In-Lu Amy Liu, Harari A, et al. Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J Clin Endocrinol Metab. 2013;98(3):1122-9. DOI: 10.1210.jc.2012-4022
- Fraser WD. Hyperparathyroidism. Lancet 2009;374(9684):145-58. DOI: 10.1016/ S0140-6736(09)60507-9.
- Ahmadieh H, Kreidieh O, Ea A, G EF. Minimally invasive parathyroidectomy guided by intraoperative parathyroid hormone monitoring (IOPTH) and preoperative imaging versus bilateral neck exploration for primary hyperparathyroidism in adults (Review). 2020; DOI: 10.1002/14651858. CD010787.pub2.
- Pulgar D, Jans J, D' AguzannN, León A, Goñi I, González G, et al.

- Hiperparatiroidismo primario: Manejo quirúrgico. Rev Chil Cir. 2014;66(4):313-9, http://dx.doi.org/10.4067/S0718-40262014000400004.
- Barczyński M, Gołkowski F, Nawrot I. The current status of intraoperative iPTH assay in surgery for primary hyperparathyroidism. Gland Surg. [Internet]. 2015;4(1):36-43. http:// dx.doi.org/10.3978/j.issn. 2227-684X.2015.01.01.
- Majcen M, Hocevar M. Surgical options in treating patients with primary hyperparathyroidism. Radiol Oncol. 2020;54(1):22-32. doi: 10.2478/raon-2020-0010.
- Lew JI, Irvin GL. Focused
 parathyroidectomy guided by intraoperative parathormone monitoring
 does not miss multiglandular disease
 in patients with sporadic primary
 hyperparathyroidism: A 10-year outcome.
 Surgery [Internet]. 2009;146(6):10217. Available from: http://dx.doi.
 org/10.1016/j.surg.2009.09.006
- 9. Khokar AM, Kuchta KM, Moo-Young TA, Winchester DJ, Prinz RA. Increasing trend of bilateral neck exploration in

- primary hyperparathyroidism. Am J Surg [Internet]. 2020;219(3):466-70. Available from: https://doi.org/10.1016/j. amjsurg.2019.09.039.
- Ye Z, Silverberg SJ, Sreekanta A, Tong K, Wang Y, Chang Y, et al. The Efficacy and Safety of Medical and Surgical Therapy in Patients With Primary Hyperparathyroidism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Bone Miner Res. 2022 Nov 1;37(11):2351-72. DOI: 10.1002/jbmr.4685.
- Kiernan CM, Wang T, Perrier ND, Grubbs EG, Solórzano CC. Bilateral Neck Exploration for Sporadic Primary Hyperparathyroidism: Use Patterns in 5,597 Patients Undergoing Parathyroidectomy in the Collaborative Endocrine Surgery Quality Improvement Program. J Am Coll Surg. 2019 Apr 1;228(4):652-9. https://doi.org/10.1016/j. jamcollsurg.2018.12.034.
- Patel CN, Salahudeen HM, Lansdown M, Scarsbrook AF. Clinical utility of ultrasound and 99mTc sestamibi SPECT/ CT for preoperative localization of parathyroid adenoma in patients with

ARTÍCULO ORIGINAL

- primary hyperparathyroidism. Clin Radiol. 2010 Apr;65(4):278-87. doi:10.1016/j. crad.2009.12.005.
- Duke WS, Omesiete WI, Walsh NJ, Terris DJ. Baseline intraoperative intact parathyroid hormone levels in parathyroid surgery. Head Neck 2019 Mar 1:41(3):592-7. DOI: 10.1002/hed.25193.
- Gioviale MC, Damiano G, Altomare R, Maione C, Buscemi S, Buscemi G, et al. Intraoperative measurement of parathyroid hormone: A Copernican revolution in the surgical treatment of hyperparathyroidism. Int J Surg [Internet]. 2016;28:S99-102. Available from: http://dx.doi. org/10.1016/j.ijsu.2015.12.056
- 15. Perrier N, Lang BH, Farias LCB, Poch LL, Sywak M, Almquist M, et al. Surgical

- Aspects of Primary Hyperparathyroidism. J Bone Miner Res. 2022 Nov 1;37(11):2373-90. DOI: 10.1002/jbmr.4689.
- 16. Barczynski M, Konturek A, Cichon S, Hubalewska-Dydejczyk A, Golkowski F, Huszno B. Intraoperative parathyroid hormone assay improves outcomes of minimally invasive parathyroidectomy mainly in patients with a presumed solitary parathyroid adenoma and missing concordance of preoperative imaging. Clin Endocrinol (Oxf). 2007 Jun;66(6):878-85. doi: 10.1111/j.1365-2265.2007.02827.x.
- Pontin A, Pino A, Caruso E, Pinto G, Melita G, Maria DP, et al. Postoperative Bleeding After Thyroid Surgery: Care Instructions. SiSli Etfal Hastan Tip

- Bul / Med Bull Sisli Hosp. 2019; DOI: 10.14744/SEMB.2019.95914.
- 18. Siperstein A, Berber E, Barbosa GF, Tsinberg M, Greene AB, Mitchell J, et al. Predicting the success of limited exploration for primary hyperparathyroidism using ultrasound, sestamibi, and intraoperative parathyroid hormone: Analysis of 1158 cases. Ann Surg. 2008 Sep;248(3):420-6. DOI: 10.1097/SLA.0b013e3181859f71.
- 19. Iacobone M, Scerrino G, Palazzo FF. Parathyroid surgery: an evidence-based volume—outcomes analysis: European Society of Endocrine Surgeons (ESES) positional statement. Langenbeck's Arch Surg. 2019;404(8):919-27. https://doi.org/10.1007/s00423-019-01823-9.