Uso de exoscopio con visualización tridimensional para reconstrucción de extremidad inferior. Caso Clínico

Gunther Mangelsdorff^{1,a}, Gregorio Maturana-Cortés^{1,b}, Miguel Obaid^{1,c}

Use of an exoscope with three-dimensional visualization for reconstruction of the lower extremity. Case Report

Introduction: Microsurgery is widely used in different surgical areas and is becoming more and more massive. However, for microsurgeons, the association of long-term musculoskeletal problems is frequent, due to maintaining prolonged and rigid static postures to achieve adequate vision using conventional microscopes. The appearance of microscopes with three-dimensional 4K image display, also called exoscopes, would replace traditional optics. **Case Report**: We present the case of satisfactory lower extremity reconstruction using two free flaps, using an exoscope with three-dimensional visualization, totally dispensing with the use of binoculars. First experience, appreciations and surgical time of anastomosis are described.

Key words: microsurgery; reconstruction; exoscope.

Resumen

Introducción: La microcirugía es utilizada, ampliamente, en distintas áreas quirúrgicas y cada vez de forma más masiva. Sin embargo, para los microcirujanos es frecuente la asociación de problemas musculoesqueléticos a largo plazo, por mantener posturas estáticas prolongadas y rígidas para lograr una adecuada visión, utilizando los microscopios convencionales. La aparición de microscopios con visualización de imagen 4K tridimensionales, también llamados exoscopios, reemplazarían a los ópticos tradicionales. Caso Clínico: Se presenta el caso de reconstrucción de extremidad inferior satisfactoria mediante dos colgajos libres, utilizando exoscopio con visualización tridimensional, prescindiendo totalmente del uso de binoculares. Se describe primera experiencia, apreciaciones y tiempo quirúrgico de anastomosis. Palabras clave: microcirugía; reconstrucción; exoscopio.

¹Hospital del Trabajador ACHS. Santiago, Chile. ^ahttps://orcid.org/0009-0000-7578-5410 ^bhttps://orcid.org/0009-0008-3843-3246 ⁶https//orcid.org/0000-0001-5425-9323

Recibido el 2023-09-02 y aceptado para publicación el 2024-02-10

Correspondencia a:

Dr. Gunther Mangelsdorff gmangels@gmail.com

E-ISSN 2452-4549

Introducción

A mediados del siglo XX, se dio inicio el uso del microscopio en cirugía de laringe y neurocirugía por medio de binoculares para obtención de una visión estereoscópica¹. La implementación del microscopio ha avanzado significativamente, convirtiéndose en una herramienta imprescindible y de uso rutinario en distintas áreas quirúrgicas tales como neurocirugía, cirugía de cabeza y cuello, otorrinolaringología, cirugía plástica reconstructiva, entre otras.

El uso del microscopio, hasta hace poco, requería que el cirujano mirara directamente a través de lentes para visualizar el objetivo, debiendo mantener una postura inmóvil y rígida por tiempo prolongado, ocasionando a largo plazo problemas de tipo musculoesquelético. Cuyo impacto negativo en el microcirujano ha ganado importancia en las últimas décadas, paralelo a un incremento en la complejidad quirúrgica².

La patología musculoesquelética es uno de los problemas más frecuentes en los cirujanos que realizan microcirugía³, reportando una incidencia de molestias musculoesqueléticas que alcanzan el 77,5% de los cirujanos entrevistados⁴, siendo más frecuente el dolor en la región cervical y dorsal³.

Actualmente, esta aproximación comienza a cambiar con el advenimiento de microscopios con tecnología de exoscopio, que permite la visualización digital de imágenes en resolución 4K, con tecnología en tres dimensiones, directamente en monitores, prescindiendo totalmente del uso de binoculares. Esto con el objetivo de lograr mayor libertad de movimiento y posiciones más ergonómicas.

Se presenta el caso de paciente con trauma complejo de extremidad inferior reconstruido con dos colgajos libres, mediante el uso del exoscopio con visualización de imagen 4K tridimensional. Se describe primera experiencia, apreciaciones y tiempo quirúrgico de anastomosis.

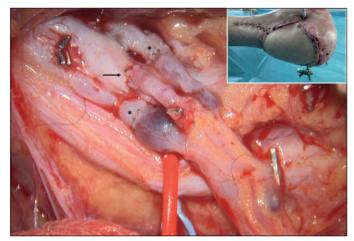
Descripción del Caso Clínico

Paciente de sexo masculino, 51 años, sin patologías crónicas. Ingresa al Hospital del Trabajador por accidente de tránsito que resulta como consecuencia, trauma complejo de pie izquierdo con luxofractura de Lisfranc y Chopart expuesta, con signos de síndrome compartimental y desforramiento complejo de pie, que requiere de estabilización de fracturas mediante uso de tutor externo y agujas de Kirschner y fasciotomía de urgencia por parte de traumatología. Evoluciona con sufrimiento de partes blandas requiriendo múltiples aseos quirúrgicos para eliminar tejido desvitalizado, asociado a terapia de

presión negativa hasta lograr un lecho adecuado, vital y libre de infección en zona de calcáneo y cara posterior de tobillo con exposición de tendón aquiliano y otra exposición tendinosa en la región dorsal del pie.

Evaluado en comité de cirugía plástica, se programa para cobertura con dos colgajos libres anterolateral de muslo (ALT) en 2 tiempos usando exoscopio Mitaka MM90[®].

En el intraoperatorio la disposición del microscopio se instala de forma habitual, salvo que la pantalla principal 4K 3D de 43" se dispone al frente del microcirujano. La visualización en 3D se realiza a través de lentes apropiados, disponibles para el cirujano principal, como para el resto del personal interesado. Para el segundo cirujano, dispone de una segunda pantalla 4K 3D de 32" que se ubica de manera opuesta al anterior monitor y configurada con imagen en espejo (Figura 1).


El primer colgajo anterolateral (ALT) de muslo izquierdo para cobertura en región de calcáneo y cara posterior de tobillo izquierdo se realiza el día 41 posterior al accidente. Se realizan 3 microanastomosis, 1 arterial término-lateral a arteria tibial posterior y 2 venas término- terminal a venas tibial posterior con sutura de nylon 9-0, con tiempo quirúrgico total de 4:51 hrs. (Tabla 1 y Figura 2).

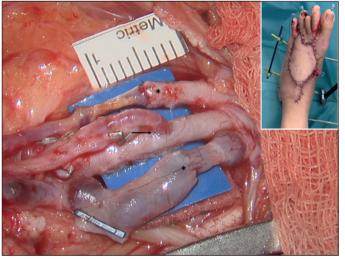

Figura 1. Disposición de exoscopio Mitaka MM90® en el intraoperatorio. Monitor principal 4K UHD para visualización tridimensional de 46′′ dispuesto al frente del cirujano principal. Uso de lentes pasivos para visualización tridimensional por cirujano principal y asistentes.

Tabla 1. Descripción de tiempo total quirúrgico, de anastomosis vascular y tamaño de vasos sanguíneos, del primer y segundo tiempo quirúrgico para cobertura de cara posterior de tobillo, calcáneo y dorso de pie izquierdo con colgajos libres anterolateral de muslos

Tiempo quirúrgico utilizado para realización de a	nastomosis vascular con exoscopi	o y tamaño de vasos sa	nguíneos
Colgajo ALT (Primer tiempo quirúrgico)	Tipo de anastomosis	Medida	Tiempo Sutura
Tiempo anastomosis			(mm:ss)
Arteria Perforante ALT - Arteria tibial posterior	Termino - Lateral	1,5-3	15:53
Vena Perforante ALT - Vena tibial posterior (1)	Termino - Terminal	2,5-3	30:00
Vena Perforante ALT - Vena tibial posterior (2)	Termino - Terminal	2,5-2,5	15:25
Tiempo total de cirugía			(hh:mm) 4:51
Colgajo ALT (Segundo tiempo quirúrgico)	Tipo de anastomosis	Medida	Tiempo Sutura
Tiempo anastomosis			(mm:ss)
Anastomosis T-L arteria dorsal del pie	Termino - Lateral	1-3	48:17
Anastomosis T-T vena tibial posterior (1)	Termino - Terminal	4-3	20:55
Anastomosis T-T vena tibial posterior (2)	Termino - Terminal	1,8-2,2	14:39
Tiempo de cirugía			(hh:mm) 6:22

Figura 2. Visión de microanastomosis realizando anastomosis término-lateral (flecha negra) a arteria tibial posterior y termino-terminal a venas tibiales posteriores (asterisco), utilizando exclusivamente exoscopio con visualización de imagen 4K tridimensional (Mitaka MM90®). En la esquina superior derecha, visión de colgajo libre anterolateral de muslo para cobertura de cara posterior de tobillo y calcáneo

Figura 3. Visión de microanastomosis realizando anastomosis término-lateral a arteria dorsal del pie (flecha negra) y termino-terminal a venas dorsales del pie (asterisco), utilizando exclusivamente exoscopio con visualización de imagen 4K tridimensional (Mitaka MM90®).

El segundo tiempo quirúrgico se realiza el día 48 posterior al accidente, mismo cirujano, un segundo colgajo ALT de muslo derecho, para cobertura de defecto en dorso de pie. Se realizan en total 3 microanastomosis, 1 arteria término-lateral a arteria dorsal del pie y 2 venas término-terminal con nylon 11-0, con tiempo quirúrgico total de 6:22 hrs. (Tabla 1 y Figura 3).

La monitorización de ambos colgajos se realiza de manera clínica y con *Doppler* durante las primeras 48 horas de la cirugía. Luego solo monitorización clínica, evolucionando ambos sin contratiempos, sin dehiscencia necrosis, infección ni necesidad de reintervenciones. Se otorga el alta del paciente para continuar manejo y rehabilitación de manera ambulatoria (Figura 4).

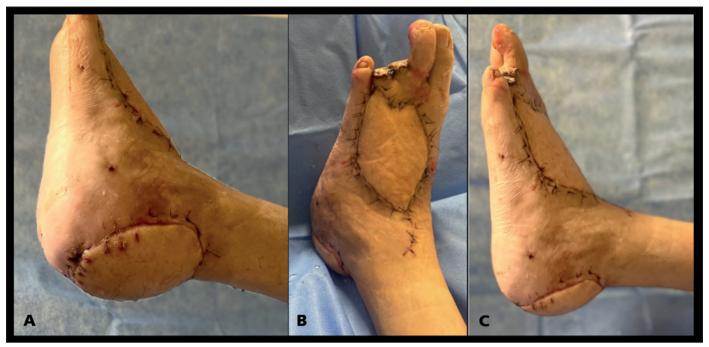


Figura 4. A: Visión de talón previo al alta; B: Visión de dorso del pie previo al alta; C: Visión de ambos colgajos previos al alta.

Discusión

Es ampliamente conocido que los cirujanos están más expuestos al desarrollo de patología musculoesquelética y en específico los que realizan microcirugía, con un riesgo hasta 3 veces mayor^{1,3}. Esto se puede traducir en menos vida laboral activa por incapacidad, o incluso mayor fatiga por parte de los cirujanos en procedimientos extensos, lo que puede contribuir a resultados desfavorables para el paciente.

Desde hace más de 15 años que existe la tecnología para realizar microcirugía con el uso de monitores y prescindiendo de los binoculares^{1,5}. Siendo pioneros las especialidades de neurocirugía y oftalmología. En esta última, ya es considerado su uso de regla en el manejo quirúrgico de vitrectomía.

Estudios han comparado el uso de la tecnología con monitores *versus* el uso tradicional de binoculares en microcirugía experimental con ratones. Se estableció que es seguro realizar cirugías con esta técnica, sin diferencia significativa en tiempo operatorio ni en permeabilidad de los vasos en el seguimiento mediante *Doppler*^{6,7}.

Sin embargo, prescindir del uso de binoculares, no es solamente seguro en microcirugía, sino también ha demostrado que el uso de monitores logra mayor libertad de movimiento en comparación a la realización de cirugías con binoculares⁸. Lo que impacta disminuyendo la sobrecarga en las articulaciones y por ende se traduciría en mayor confort para el cirujano y menor desgaste a largo plazo, especialmente, cuando se realizan estos procedimientos de forma periódica (Tabla 2).

En este caso se pudo evaluar que se puede realizar de forma segura colgajos libres con microcirugía con tecnología de monitores 3D y prescindir de los

Tabla 2. Tabla comparativa en cuanto a las características del microscopio convencional y el exoscopio Mitaka MM90®

Características	Convencional (M525 F50)	Exoscopio (Mitaka MM90®)
Visualización	Binocular (+++)	Pantalla 4K UHD (+++)
Distancia focal	207-470 mm	200-600 mm
Latencia imagen	0	mínima
Zoom ratio	6:1	8:1
Rango magnificación	1,2x - 12,8x	1,4x - 21,6x
Fuente de luz	300W Xenon	300W Xenon
Ergonomía	(++)	(+++)
Posición del cirujano	Hiperextensión de cuello	Posición natural
Numero de	Máximo 3	Ilimitado
Costo	(+)-(++)	(+++)

binoculares. Si bien se trata del reporte de un caso, es una tecnología que, por primera vez, se emplea en nuestro país y se cuenta escasa experiencia mundial publicada que reporte el uso de esta tecnología en colgajos libres en microcirugía. Recientemente, se publicó una serie de Samaha⁹, donde se empleó esta tecnología para realización de 8 colgajos libres en humanos. Este trabajo, al igual que nuestro caso, reporta que la cirugía fue exitosa, tiempos operatorios semejantes y mayor ergonomía referida por el cirujano.

Es importante comentar que en nuestro caso se logró realizar anastomosis en un total de 2 arterias y 4 venas. Destacando que una anastomosis arterial y 2 venosas fueron realizadas en vasos de calibre pequeño de 1,8 mm, utilizando nylon 11-0 para la anastomosis. Sin embargo, la percepción del cirujano fue que la tecnología empleada permitía una adecuada resolución, percepción de profundidad, seguridad en el procedimiento y el beneficio de que el empleo de un monitor amplio logra una comodidad muy superior al de los binoculares. En este caso el paciente evolucionó, favorablemente, sin necesidad de reintervenciones por ninguno de los 2 colgajos libres realizados.

En el caso presentado los monitores utilizados contaban con tecnología 3D, donde el procesamiento de imagen permite percibir de forma más adecuada la profundidad de la imagen lo que, teóricamente, debería beneficiar el trabajo del cirujano. Existen reportes donde se evaluó el uso de la tecnología 3D o 2D en microcirugía y se determinó que los ángulos adoptados al utilizar monitores son más fisiológicos que al utilizar binoculares, lo que podría contribuir en menor fatiga por parte del equipo médico⁸.

Interesante también en este caso es el uso de monitores 4k con tecnología 3D y uso de antiparras polarizadas. Logrando una resolución muy adecuada y sin retraso en el procesamiento de la imagen, permitiendo una ejecución cómoda por parte del cirujano.

Por último, recalcar el aporte que genera este tipo de tecnología en la docencia y en el personal de pabellón. Si bien existen microscopios con la capacidad de reproducir imágenes en monitores 2D, el empleo de tecnología 3D permite que todos los participantes de pabellón puedan tener la misma visualización que tiene el cirujano en tiempo real, logrando que la docencia se puede desarrollar de mejor manera.

Dentro de las limitaciones de nuestro trabajo reconocemos que es solo un reporte de caso, sin embargo, consideramos que es beneficioso dar a conocer esta tecnología que está disponible en nuestro país y que el empleo de esta en microcirugía es seguro y puede aportar en mejorar aspectos ergonómicos en el personal médico.

Conclusión

Se puede realizar colgajos microquirúrgicos utilizando microscopios con visualización de imagen en monitores con tecnología 3D, resolución 4K y prescindir del uso de binoculares.

Responsabilidades éticas

Protección de personas y animales. Los autores declaran que en este manuscrito no se han realizado experimentos en seres humanos ni animales.

Confidencialidad de los datos. Los autores declaran que en este artículo no aparecen datos de pacientes.

Financiación: Ninguna.

Conflictos de interés: Ninguno.

Agradecimientos: Se agradece a Sebastián Álvarez por prestarnos el equipo Mitaka MM90[®] para la resolución del caso utilizando esta tecnología.

Rol

Gunther Mangeldorf: Edición y revisión.

Gregorio Maturana: Revisión de literatura, redacción, edición y revisión.

Miguel Obaid: Revisión de literatura, redacción y edición.

CASOS CLÍNICOS

Bibliografía

- Mamelak AN, Danielpour M, Black KL, Hagike M, Berci G. Un sistema de exoscopio de alta definición para neurocirugía y otras disciplinas microquirúrgicas: informe preliminar. Surg Innov. 2008;15:38-46. doi: 10.1177/1553350608315954.
- Abramovic A, Demetz M, Krigers A, Bauer M, Lener S, Pinggera D, et al. Surgeon's comfort: The ergonomics of a robotic exoscope using a head-mounted display. Brain Spine 2021;2:100855. doi: 10.1016/j.bas.2021.100855.
- Capone AC, Parikh PM, Gatti ME, Davidson BJ, Davison SP. Occupational injury in plastic surgeons. Plast Reconstr Surg. 2010;125:1555-61. doi: 10.1097/

- PRS.0b013e3181d62a94.
- Khansa I, Khansa L, Westvik TS, Ahmad J, Lista F, Janis JE. Work-related musculoskeletal injuries in plastic surgeons in the United States, Canada, and Norway. Plast Reconstr Surg. 2018;141:165e-175e.
- Khalessi AA, Rahme R, Rennert RC, Borgas P, Steinberg JA, White TG, et al. First-in-Man Clinical Experience Using a High-Definition 3-Dimensional Exoscope System for Microneurosurgery. Oper Neurosurg (Hagerstown). 201916:717-25. doi: 10.1093/ons/opy320. PMID: 30476242.
- Liu J, Chen B, Ni Y, Zhan Y, Gao H.
 Application of a three-dimensional microsurgical video system for a rat femoral vessel anastomosis. Chin Med J.

- (Engl). 2014;127:348-52.
- Mendez BM, Chiodo MV, Vandevender D, Patel PA. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery. Plast Reconstr Surg Glob Open. 2016;4:e717. doi: 10.1097/ GOX.00000000000000727.
- Yu D, Sackllah M, Woolley C, Kasten S, Armstrong T. Quantitative posture analysis of 2D, 3D, and optical microscope visualization methods for microsurgery tasks. Work. 2012;41 Suppl 1:1944-7. doi: 10.3233/WOR-2012-0412-1944.
- 9. Samaha Y, Ray E. Three-Dimensional Video Microscopy: Potential for Improved Ergonomics without Increased Operative Time? Arch Plast Surg. 2023;50:125-9. doi: 10.1055/s-0042-1758768.